Premium
The global structure and time evolution of dayside magnetopause surface eigenmodes
Author(s) -
Hartinger M. D.,
Plaschke F.,
Archer M. O.,
Welling D. T.,
Moldwin M. B.,
Ridley A.
Publication year - 2015
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2015gl063623
Subject(s) - magnetopause , geophysics , physics , solar wind , computational physics , magnetosphere , instability , space physics , normal mode , magnetic field , atmospheric sciences , mechanics , acoustics , quantum mechanics , vibration
Theoretical work and recent observations suggest that the dayside magnetopause may support its own eigenmode, consisting of propagating surface waves which reflect at the northern and southern ionospheres. These magnetopause surface eigenmodes (MSEs) are a potential source of magnetospheric ultralow‐frequency (ULF) waves with frequencies less than 2 mHz. Here we use the Space Weather Modeling Framework to study the magnetospheric response to impulsive solar wind dynamic pressure increases. Waves with 1.8 mHz frequency are excited whose global properties are largely consistent with theoretical predictions for MSE and cannot be explained by other known ULF wave modes. These simulation results lead to two key findings: (1) MSE can be sustained in realistic magnetic field geometries with nonzero flow shear and finite current layer thickness at the magnetopause and (2) MSE can seed the growth of tailward propagating surface waves via the Kelvin‐Helmholtz instability.