z-logo
open-access-imgOpen Access
Thermo‐kinematic evolution of the A nnapurna‐ D haulagiri H imalaya, central N epal: The C omposite O rogenic S ystem
Author(s) -
Parsons A. J.,
Law R. D.,
Lloyd G. E.,
Phillips R. J.,
Searle M. P.
Publication year - 2016
Publication title -
geochemistry, geophysics, geosystems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.928
H-Index - 136
ISSN - 1525-2027
DOI - 10.1002/2015gc006184
Subject(s) - geology , geochronology , tectonics , lithosphere , electron backscatter diffraction , geochemistry , petrology , geomorphology , crystallography , seismology , microstructure , chemistry
The Himalayan orogen represents a “Composite Orogenic System” in which channel flow, wedge extrusion, and thrust stacking operate in separate “Orogenic Domains” with distinct rheologies and crustal positions. We analyze 104 samples from the metamorphic core (Greater Himalayan Sequence, GHS) and bounding units of the Annapurna‐Dhaulagiri Himalaya, central Nepal. Optical microscopy and electron backscatter diffraction (EBSD) analyses provide a record of deformation microstructures and an indication of active crystal slip systems, strain geometries, and deformation temperatures. These data, combined with existing thermobarometry and geochronology data are used to construct detailed deformation temperature profiles for the GHS. The profiles define a three‐stage thermokinematic evolution from midcrustal channel flow (Stage 1, >700°C to 550–650°C), to rigid wedge extrusion (Stage 2, 400–600°C) and duplexing (Stage 3, <280–400°C). These tectonic processes are not mutually exclusive, but are confined to separate rheologically distinct Orogenic Domains that form the modular components of a Composite Orogenic System. These Orogenic Domains may be active at the same time at different depths/positions within the orogen. The thermokinematic evolution of the Annapurna‐Dhaulagiri Himalaya describes the migration of the GHS through these Orogenic Domains and reflects the spatial and temporal variability in rheological boundary conditions that govern orogenic systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here