z-logo
open-access-imgOpen Access
Microstructural and geochemical constraints on the evolution of deep arc lithosphere
Author(s) -
Chin Emily J.,
Soustelle Vincent,
Hirth Greg,
Saal Alberto E.,
Kruckenberg Seth C.,
Eiler John M.
Publication year - 2016
Publication title -
geochemistry, geophysics, geosystems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.928
H-Index - 136
ISSN - 1525-2027
DOI - 10.1002/2015gc006156
Subject(s) - peridotite , geology , olivine , lithosphere , geochemistry , trace element , mantle (geology) , ophiolite , mantle wedge , pyroxene , mineralogy , tectonics , seismology
Mantle xenoliths from the Sierra Nevada, California, USA, sampled a vertical column (60–120 km) of lithosphere that formed during Mesozoic continental arc magmatism. This lithosphere experienced an anticlockwise P‐T‐t path resulting in rapid cooling that effectively “quenched in” features inherited from earlier high‐temperature conditions. Here we combine new mineral chemistry data (water, trace element, and major element concentrations) with mineral crystallographic preferred orientations (CPOs) to investigate the relationship between melt infiltration and deformation. The peridotites record a refertilization trend with increasing depth, starting from shallow, coarse‐protogranular, less‐melt‐infiltrated spinel peridotite with strong, orthorhombic olivine CPO to deep, fine‐porphyroclastic, highly melt‐infiltrated garnet peridotite with weak, axial‐[010] olivine CPO. In contrast to the observed axial‐[010] CPOs, subgrain boundary orientations and misorientation axes suggest the dominant activation of the (001)[100] slip system, suggesting deformation under moderately hydrous conditions. After accounting for effects of subsolidus cooling, we see coherent trends between mineral trace element abundance and water content, indicating that melt infiltration led to an increase in water content of the peridotites. However, measured olivine and pyroxene water contents in all peridotites (5–10 and 30–500 wt ppm, respectively) are lower than that required to promote dominant (001)[100] slip system observed in both natural and experimental samples. These results suggest that deformation occurred earlier along the P‐T path, probably during or shortly after hydrous melt infiltration. Subsequent rapid cooling at 90 Ma led to water loss from olivine (owing to decreased solubility at low temperature), leaving behind a deep arc lithosphere that remained viscously coupled to the Farallon slab until the opening of the slab window in the late Cenozoic.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here