Open Access
Tracking the Late Jurassic apparent (or true) polar shift in U‐Pb‐dated kimberlites from cratonic North America (Superior Province of Canada)
Author(s) -
Kent Dennis V.,
Kjarsgaard Bruce A.,
Gee Jeffrey S.,
Muttoni Giovanni,
Heaman Larry M.
Publication year - 2015
Publication title -
geochemistry, geophysics, geosystems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.928
H-Index - 136
ISSN - 1525-2027
DOI - 10.1002/2015gc005734
Subject(s) - geology , kimberlite , polar wander , paleomagnetism , apparent polar wander , paleontology , outcrop , baltica , geochemistry , mantle (geology) , ordovician
Abstract Different versions of a composite apparent polar wander (APW) path of variably selected global poles assembled and averaged in North American coordinates using plate reconstructions show either a smooth progression or a large (∼30°) gap in mean paleopoles in the Late Jurassic, between about 160 and 145 Ma. In an effort to further examine this issue, we sampled accessible outcrops/subcrops of kimberlites associated with high‐precision U‐Pb perovskite ages in the Timiskaming area of Ontario, Canada. The 154.9 ± 1.1 Ma Peddie kimberlite yields a stable normal polarity magnetization that is coaxial within less than 5° of the reverse polarity magnetization of the 157.5 ± 1.2 Ma Triple B kimberlite. The combined ∼156 Ma Triple B and Peddie pole (75.5°N, 189.5°E, A95 = 2.8°) lies about midway between igneous poles from North America nearest in age (169 Ma Moat volcanics and the 146 Ma Ithaca kimberlites), showing that the polar motion was at a relatively steady yet rapid (∼1.5°/Myr) pace. A similar large rapid polar swing has been recognized in the Middle to Late Jurassic APW path for Adria‐Africa and Iran‐Eurasia, suggesting a major mass redistribution. One possibility is that slab breakoff and subduction reversal along the western margin of the Americas triggered an episode of true polar wander.