Premium
Organizing groundwater regimes and response thresholds by soils: A framework for understanding runoff generation in a headwater catchment
Author(s) -
Gan John P.,
Bailey Scott W.,
McGuire Kevin J.
Publication year - 2014
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1002/2014wr015498
Subject(s) - water table , surface runoff , hydrology (agriculture) , groundwater , soil water , environmental science , infiltration (hvac) , drainage basin , table (database) , geology , soil science , ecology , geography , geotechnical engineering , meteorology , computer science , biology , data mining , cartography
A network of shallow groundwater wells in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire, U.S. was used to investigate the hydrologic behavior of five distinct soil morphological units. The soil morphological units were hypothesized to be indicative of distinct water table regimes. Water table fluctuations in the wells were characterized by their median and interquartile range of depth, proportion of time water table was present in the solum, and storage‐discharge behavior of subsurface flow. Statistically significant differences in median, interquartile range, and presence of water table were detected among soil units. Threshold responses were identified in storage‐discharge relationships of subsurface flow, with thresholds varying among soil units. These results suggest that soil horizonation is indicative of distinct groundwater flow regimes. The spatial distribution of water table across the catchment showed variably connected/disconnected active areas of runoff generation in the solum. The spatial distribution of water table and therefore areas contributing to stormflow is complex and changes depending on catchment storage.