Premium
Tomographic and spectral views on the lifecycle of polar mesospheric clouds from Odin/OSIRIS
Author(s) -
Hultgren Kristoffer,
Gumbel Jörg
Publication year - 2014
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
eISSN - 2169-8996
pISSN - 2169-897X
DOI - 10.1002/2014jd022435
Subject(s) - remote sensing , brightness , effective radius , scattering , particle (ecology) , polar , wavelength , cloud top , physics , computational physics , satellite , environmental science , optics , geology , astrophysics , astronomy , oceanography , galaxy
Vertical and horizontal structures of Polar Mesospheric Clouds (PMC) have been recovered by tomographic retrieval from the OSIRIS instrument aboard the Odin satellite. The tomographic algorithm has been used to return local scattering coefficients at seven wavelengths in the ultraviolet. This spectral information is used to retrieve PMC particle sizes, number density, and ice mass density. While substantial horizontal variations are found, local vertical structures are overall consistent with the idea of a growth‐sedimentation process leading to a visible cloud. Large numbers of small particles are present near the top of the observed cloud layer. Toward lower altitudes, particle sizes increase while particle number densities decrease. A close relationship is found between the distribution of local PMC scattering coefficient and ice mass density. The bottom of the cloud often features large particles with mode radii exceeding 70 nm that rain out of the cloud before sublimating. The number density of these large particles is small, and they do not contribute significantly to the overall cloud brightness. As a consequence, the presence of these large particles can be difficult to identify for remote sensing techniques that integrate over the entire cloud column. When it comes to deriving absolute values of particle mode radius and number density, there is a strong sensitivity to assumptions on the mathematical form of the particle size distribution. We see a continued strong need to resolve this issue by co‐analysis of various remote sensing techniques and observation geometries.