Premium
Passive buoyant tracers in the ocean surface boundary layer: 1. Influence of equilibrium wind‐waves on vertical distributions
Author(s) -
Kukulka T.,
Brunner K.
Publication year - 2015
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
eISSN - 2169-9291
pISSN - 2169-9275
DOI - 10.1002/2014jc010487
Subject(s) - eddy diffusion , turbulence , mechanics , boundary layer , thermal diffusivity , physics , turbulence kinetic energy , surface layer , breaking wave , atmospheric sciences , wind wave , surface wave , langmuir turbulence , wavelength , mixed layer , range (aeronautics) , mixing (physics) , meteorology , thermodynamics , wave propagation , materials science , optics , layer (electronics) , plasma oscillation , plasma , quantum mechanics , composite material
This paper is the first of a two part series that investigates passive buoyant tracers in the ocean surface boundary layer. The first part examines the influence of equilibrium wind‐waves on vertical tracer distributions, based on large eddy simulations (LES) of the wave‐averaged Navier‐Stokes equation. The second part applies the model to investigate observations of buoyant microplastic marine debris, which has emerged as a major ocean pollutant. The LES model captures both Langmuir turbulence (LT) and enhanced turbulent kinetic energy input due to breaking waves (BW) by imposing equilibrium wind‐wave statistics for a range of wind and wave conditions. Concentration profiles of LES agree well with analytic solutions obtained for an eddy diffusivity profile that is constant near the surface and transitions into the K‐Profile Parameterization (KPP) profile shape at greater depth. For a range of wind and wave conditions, the eddy diffusivity normalized by the product of water‐side friction velocity and mixed layer depth, h, mainly depends on a single nondimensional parameter, the peak wavelength (which is related to Stokes drift decay depth) normalized by h. For smaller wave ages, BW critically enhances near‐surface mixing, while LT effects are relatively small. For greater wave ages, both BW and LT contribute to elevated near‐surface mixing, and LT significantly increases turbulent transport at greater depth. We identify a range of realistic wind and wave conditions for which only Langmuir (and not BW or shear driven) turbulence is capable of deeply submerging buoyant tracers.