z-logo
Premium
Coastal cape and canyon effects on wind‐driven upwelling in northern Taiwan Strait
Author(s) -
Chen Zhaoyun,
Yan XiaoHai,
Jiang Yuwu
Publication year - 2014
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
eISSN - 2169-9291
pISSN - 2169-9275
DOI - 10.1002/2014jc009831
Subject(s) - upwelling , canyon , geology , oceanography , vorticity , potential vorticity , thermocline , downwelling , climatology , cape verde , bay , geomorphology , meteorology , vortex , geography , ethnology , history
A combination of observations and numerical model is used to reveal the upwelling features and mechanisms in the northern Taiwan Strait during summer. In situ data give evidence of the upwelling in the form of thermocline tilting upward onshore. The remote sensing data show a strip of upwelling in the coastal region, which occurs more than half a summer. The upwelling probability map indicates there are two upwelling cores, one located downstream of Pingtan Island formed as cape effect and the other over the coastal canyon off the Sansha Bay. Remote sensing data and numerical model results suggest that the southerly wind plays a key role in shaping this upwelling strip, while the tides regulate the upwelling location through tidal mixing effect in the shallow water region, especially lee of Pingtan Island. Further numerical experiments using idealized cape and coastal canyon topography show that vertical velocity is intensified downstream of the cape and canyon. The vorticity equation shows that relative vorticity change along a streamline and frictional diffusion of vorticity are responsible for the vertical velocity off the cape and within and around the canyon. According to the conservation of potential vorticity, the variation of relative vorticity along a streamline over irregular topography, e.g., cape and canyon, is the main mechanism for the two upwelling cores in the northern Taiwan Strait.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here