Premium
A simulation study of the thermosphere mass density response to substorms using GITM
Author(s) -
Liu Xianjing,
Ridley Aaron
Publication year - 2015
Publication title -
journal of geophysical research: space physics
Language(s) - English
Resource type - Journals
eISSN - 2169-9402
pISSN - 2169-9380
DOI - 10.1002/2014ja020962
Subject(s) - thermosphere , substorm , physics , perturbation (astronomy) , joule heating , ionosphere , atmospheric sciences , astrophysics , computational physics , atomic physics , magnetic field , geophysics , magnetosphere , quantum mechanics
The temporal and spatial variations of the thermospheric mass density during a series of idealized substorms were investigated using the Global Ionosphere Thermosphere Model (GITM). The maximum mass density perturbation of an idealized substorm with a peak variation of hemispheric power (HP) of 50 GW and interplanetary magnetic field (IMF) B z of −2 nT was ~14% about 50 min after the substorm onset in the nightside sector of the auroral zone. The mass density response to different types of energy input has a strong local time dependence, with the mass density perturbation due to only an IMF B z variation peaking in the dusk sector and the density perturbation due to only HP variation peaks in the nightside sector. Simulations with IMF B z changes only and HP changes only showed that the system behaves slightly nonlinearly when both IMF and HP variations are included (a maximum of 6% of the nonlinearity) and that the nonlinearity grows with energy input. The neutral gas heating rate due to Joule heating was of same magnitude as the heating rate due to precipitation, but the majority of the temperature enhancement due to the heating due to precipitation occurs at lower altitude as compared to the auroral heating. About 110 min after onset, a negative mass density perturbation (~−5%) occurred in the night sector, which was consistent with the mass density measurement of the CHAMP satellite.