Premium
Are steady magnetospheric convection events prolonged substorms?
Author(s) -
Walach M.T.,
Milan S. E.
Publication year - 2015
Publication title -
journal of geophysical research: space physics
Language(s) - English
Resource type - Journals
eISSN - 2169-9402
pISSN - 2169-9380
DOI - 10.1002/2014ja020631
Subject(s) - substorm , convection , physics , geophysics , solar wind , magnetosphere , sawtooth wave , earth's magnetic field , ionospheric dynamo region , ionosphere , atmospheric sciences , geomagnetic storm , plasma , meteorology , magnetic field , computer vision , quantum mechanics , computer science
Magnetospheric modes, including substorms, sawtooth events, and steady magnetospheric convection events, have in the past been described as different responses of the magnetosphere to coupling with the solar wind. Using previously determined event lists for sawtooth events, steady magnetospheric convection events, and substorms, we produce a statistical study of these event types to examine their similarities and behavior in terms of solar wind parameters, auroral brightness, open magnetospheric flux, and geomagnetic indices. A superposed epoch analysis shows that individual sawteeth show the same signatures as substorms but occur during more extreme cases of solar wind driving as well as geomagnetic activity. We also explore the limitations of current methods of identifying steady magnetospheric convection events and explain why some of those events are flagged inappropriately. We show that 58% of the steady magnetospheric convection events considered, as identified by criteria defined in previous studies are part of a prolonged version of substorms due to continued dayside driving during expansion phase. The remaining 42% are episodes of enhanced magnetospheric convection, occurring after extended periods of dayside driving.