Premium
Anthropogenic influence on the changing likelihood of an exceptionally warm summer in Texas, 2011
Author(s) -
Rupp David E.,
Li Sihan,
Massey Neil,
Sparrow Sarah N.,
Mote Philip W.,
Allen Myles
Publication year - 2015
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2014gl062683
Subject(s) - forcing (mathematics) , environmental science , climatology , precipitation , moisture , atmospheric sciences , global warming , climate model , general circulation model , climate change , radiative forcing , meteorology , geography , oceanography , geology
The impact of anthropogenic forcing on the probability of high mean summer temperatures being exceeded in Texas in the year 2011 was investigated using an atmospheric circulation model to simulate large ensembles of the world with 2011 level forcing and 5 “counterfactual” worlds under preindustrial forcing. In Texas, drought is a strong control on summer temperature, so an increased frequency in large precipitation deficits and/or soil moisture deficits that may result from anthropogenic forcing could magnify the regional footprint of global warming. However, no simulated increase in the frequency of large precipitation deficits, or of soil moisture deficits, was detected from preindustrial to year 2011 conditions. Despite the lack of enhancement to warming via these potential changes in the hydrological cycle, the likelihood of a given unusually high summer temperature being exceeded was simulated to be about 10 times greater due to anthropogenic emissions.