Premium
Field evidence of the viscous sublayer in a tidally forced developing boundary layer
Author(s) -
Wengrove M. E.,
Foster D. L.
Publication year - 2014
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2014gl060709
Subject(s) - boundary layer , geology , laminar sublayer , estuary , benthic zone , geophysics , oceanography , mechanics , hydrology (agriculture) , geotechnical engineering , flow separation , physics
Field observations of boundary layer development within a tidally forced estuary revealed evidence of an observable viscous sublayer. Evidence is provided by several independent measures of the flow field, including hydrodynamic smoothness, an immobile bed, and characteristic velocity, constant stress, and higher‐order moment structures. This investigation reports what may be the second comprehensive observation of the viscous sublayer in a marine environment, and what could be the first observation of a momentum balance that includes the viscous sublayer within a shallow estuarine environment. Hydrodynamic observations were made in a straight channel within the Great Bay Estuary of New Hampshire over a flat sandy mud with low water depth of 1.5 m at the sampling location. Beyond quantifying the role of the benthic boundary layer in nutrient dynamics, these observations are useful to provide insight into very near boundary stress estimates leading to incipient motion in estuarine and coastal environments.