z-logo
Premium
Tidal‐induced net transport effects on the oxygen distribution in the thermosphere
Author(s) -
Jones M.,
Forbes J. M.,
Hagan M. E.
Publication year - 2014
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2014gl060698
Subject(s) - thermosphere , atmospheric tide , zonal and meridional , atmospheric sciences , diffusion , ionosphere , environmental science , atmosphere (unit) , physics , climatology , geology , meteorology , geophysics , thermodynamics
Through a series of numerical experiments performed with the National Center for Atmospheric Research Thermosphere‐Ionosphere‐Mesosphere‐Electrodynamics General Circulation Model, we evaluate a new mechanism by which the dissipation of vertically propagating tides acts to change the O distribution in the thermosphere. Jones et al. (2014) proposed that the tides induced a net transport of constituents themselves, in addition to the transport provided by the mean circulation induced by the dissipation of tides. Through diagnosis of the continuity equation for [O], our results show that the net meridional and vertical transport of O induced by the tides appreciably contributes to [O] changes in the lower thermosphere. Combined with recombination, these transport mechanisms drive a net reduction in [O] of ∼25% that is transmitted to higher altitudes by molecular diffusion. The migrating diurnal tide appears to be the main driver of the [O] variations during September.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom