Premium
The impact of forcing efficacy on the equilibrium climate sensitivity
Author(s) -
Kummer J. R.,
Dessler A. E.
Publication year - 2014
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2014gl060046
Subject(s) - forcing (mathematics) , climate sensitivity , climatology , environmental science , radiative forcing , atmospheric sciences , ozone , climate change , global warming , range (aeronautics) , aerosol , climate model , meteorology , geology , physics , materials science , oceanography , composite material
Estimates of the Earth's equilibrium climate sensitivity (ECS) from twentieth century observations predict a lower ECS than estimates from climate models, paleoclimate data, and interannual variability. Here we show that estimates of ECS from the twentieth century observations are sensitive to the assumed efficacy of aerosol and ozone forcing (efficacy for a forcer is the amount of warming per unit global average forcing divided by the warming per unit forcing from CO 2 ). Previous estimates of ECS based on the twentieth century observations have assumed that the efficacy is unity, which in our study yields an ECS of 2.3 K (5%–95% confidence range of 1.6–4.1 K), near the bottom of the Intergovernmental Panel on Climate Change's likely range of 1.5–4.5 K. Increasing the aerosol and ozone efficacy to 1.33 increases the ECS to 3.0 K (1.9–6.8 K), a value in excellent agreement with other estimates. Forcing efficacy therefore provides a way to bridge the gap between the different estimates of ECS.