z-logo
Premium
Laboratory study of gravel‐bed cluster formation and disintegration
Author(s) -
Heays K. G.,
Friedrich H.,
Melville B. W.
Publication year - 2014
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1002/2013wr014208
Subject(s) - cluster (spacecraft) , particle (ecology) , photogrammetry , geology , computer science , remote sensing , oceanography , programming language
Increased knowledge of clusters is essential for the understanding of sediment transport behavior and the monitoring and protection of aquatic life. A physical study using graded river gravels is conducted in a laboratory environment. Using photogrammetry and painted gravels, a cluster identification tool (CIT) is developed based on image subtraction between subsequent frames, allowing identification of any stable areas and groups of particles on the bed. This is combined with digital particle tracking (DPT) to present a novel approach for monitoring the formation and disintegration of clusters. Clusters from graded gravels are formed successfully during the experimental stage, allowing investigation into the complex dynamic behavior of cluster formation and disintegration in a simulated natural environment. Various anchor stone arrangements are used in the experiments. However, only about one fifth of the potential anchor stones on the bed surface enable cluster formation. In general, clusters classified as “typical” and “heap” are most common. Inspection of temporal cluster coverage of the test‐bed surface shows that the proportion of clusters present on the surface tends to grow with time. Maximum cluster surface coverage of between 5% and 34% is observed. In addition, particles entering and departing from clusters are monitored. Most commonly, particles enter from directly upstream of the cluster, however >20% of particles approach from a direction >20 deg from the streamwise direction. Approximately 35% of all particles directly upstream of a cluster bypass the cluster.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here