z-logo
Premium
Twomey effect observed from collocated microphysical and remote sensing measurements over shallow cumulus
Author(s) -
Werner F.,
Ditas F.,
Siebert H.,
Simmel M.,
Wehner B.,
Pilewskie P.,
Schmeissner T.,
Shaw R. A.,
Hartmann S.,
Wex H.,
Roberts G. C.,
Wendisch M.
Publication year - 2014
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
eISSN - 2169-8996
pISSN - 2169-897X
DOI - 10.1002/2013jd020131
Subject(s) - effective radius , radiance , aerosol , environmental science , atmospheric sciences , liquid water content , relative humidity , meteorology , range (aeronautics) , remote sensing , cloud computing , physics , computational physics , materials science , geology , astrophysics , galaxy , computer science , composite material , operating system
Clear experimental evidence of the Twomey effect for shallow trade wind cumuli near Barbados is presented. Effective droplet radius ( r eff ) and cloud optical thickness ( τ ), retrieved from helicopter‐borne spectral cloud‐reflected radiance measurements, and spectral cloud reflectivity ( γ λ ) are correlated with collocated in situ observations of the number concentration of aerosol particles from the subcloud layer ( N ). N denotes the concentration of particles larger than 80 nm in diameter and represents particles in the activation mode. In situ cloud microphysical and aerosol parameters were sampled by the Airborne Cloud Turbulence Observation System (ACTOS). Spectral cloud‐reflected radiance data were collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART‐HELIOS). With increasing N a shift in the probability density functions of τ and γ λ toward larger values is observed, while the mean values and observed ranges of retrieved r eff decrease. The relative susceptibilities ( RS ) of r eff , τ , and γ λ to N are derived for bins of constant liquid water path. The resulting values of RS are in the range of 0.35 for r eff and τ , and 0.27 for γ λ . These results are close to the maximum susceptibility possible from theory. Overall, the shallow cumuli sampled near Barbados show characteristics of homogeneous, plane‐parallel clouds. Comparisons of RS derived from in situ measured r eff and from a microphysical parcel model are in close agreement.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here