z-logo
Premium
Climate change projection in the Northwest Pacific marginal seas through dynamic downscaling
Author(s) -
Seo GwangHo,
Cho YangKi,
Choi ByoungJu,
Kim KwangYul,
Kim Bongguk,
Tak Yongjin
Publication year - 2014
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
eISSN - 2169-9291
pISSN - 2169-9275
DOI - 10.1002/2013jc009646
Subject(s) - hindcast , downscaling , climatology , environmental science , climate change , forcing (mathematics) , climate model , sea surface temperature , oceanography , geology
This study presents future climate change projections in the Northwest Pacific (NWP) marginal seas using dynamic downscaling from global climate models (GCMs). A regional climate model (RCM) for the Northwest Pacific Ocean was setup and integrated over the period from 2001 to 2100. The model used forcing fields from three different GCM simulations to downscale the effect of global climate change. MIROC, ECHAM, and HADCM were selected to provide climate change signals for the RCM. These signals were calculated from the GCMs using Cyclostationary Empirical Orthogonal Function analysis and added to the present lateral open boundary and the surface forcing. The RCM was validated by comparing hindcast result with the observation. It was able to project detailed regional climate change processes that GCMs were not able to resolve. A relatively large increases of water temperature were found in the marginal seas. However, only a marginal change was found along the Kuroshio path. Heat supply to the atmosphere decreases in most study areas due to a slower warming of the sea surface compared to the atmosphere. The RCM projection suggests that the temperature of the Yellow Sea Bottom Cold Water will gradually increase by 2100. Volume transports through major straits except the Taiwan Strait in the marginal seas are projected to increase slightly in future. Increased northeasterly wind stress in the East China Sea may also result in the transport change.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here