Premium
Trends in Southern Hemisphere wind‐driven circulation in CMIP5 models over the 21st century: Ozone recovery versus greenhouse forcing
Author(s) -
Wang Guojian,
Cai Wenju,
Purich Ariaan
Publication year - 2014
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
eISSN - 2169-9291
pISSN - 2169-9275
DOI - 10.1002/2013jc009589
Subject(s) - coupled model intercomparison project , climatology , environmental science , ozone depletion , ozone , greenhouse gas , atmospheric sciences , representative concentration pathways , southern hemisphere , forcing (mathematics) , northern hemisphere , climate change , climate model , oceanography , meteorology , geography , geology , stratosphere
During the late 20th century, Antarctic ozone depletion and increasing greenhouse gases (GHGs) conspired to generate conspicuous atmospheric circulation trends in the Southern Hemisphere (SH), contributing to a poleward intensification of the oceanic supergyre circulation. Forcing of Antarctic ozone depletion dominated the observed trends during the depletion period (1979–2005), but Antarctic ozone is projected to recover by the middle of the 21st century. The recovery provides a mechanism for offsetting the impact from increasing GHG emissions. To what extent will the recovery of ozone mitigate SH atmosphere and ocean circulation trends expected from increasing GHGs? We examine climate model output from the Representative Concentration Pathway 4.5 and 8.5 (RCP4.5 and RCP8.5, respectively) emission scenario experiments, submitted to the Coupled Model Intercomparison Project phase 5. Both scenarios are subject to the effect of ozone recovery. We show that during the recovery period (2006–2045), there is little poleward shift of the supergyre circulation under either RCP scenario in austral summer, due to the dominance of ozone recovery. Further, under RCP8.5 the trend in winter, a season in which ozone recovery has little impact, is greater (more poleward) than in summer, opposite to the seasonality of trends during the depletion period. Under RCP4.5, with the contribution from ozone recovery, the summer poleward shift is projected to stabilize into the postrecovery decades, whereas under RCP8.5, the summer poleward shift accelerates in the postrecovery period, presenting vastly different ocean circulation futures.