Premium
Welding of pyroclastic conduit infill: A mechanism for cyclical explosive eruptions
Author(s) -
Kolzenburg S.,
Russell J. K.
Publication year - 2014
Publication title -
journal of geophysical research: solid earth
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.983
H-Index - 232
eISSN - 2169-9356
pISSN - 2169-9313
DOI - 10.1002/2013jb010931
Subject(s) - pyroclastic rock , geology , explosive eruption , peléan eruption , volcano , tephra , pumice , electrical conduit , vulcanian eruption , petrology , impact crater , breccia , seismology , mechanical engineering , physics , astronomy , engineering
Vulcanian‐style eruptions are small‐ to moderate‐sized, singular to cyclical events commonly having volcanic explosivity indices of 1–3. They produce pyroclastic flows, disperse tephra over considerable areas, and can occur as precursors to larger (e.g., Plinian) eruptions. The fallout deposits of the 2360 B.P. eruption of Mount Meager, BC, Canada, contain bread‐crusted blocks of welded breccia as accessory lithics. They display a range of compaction/welding intensity and provide a remarkable opportunity to constrain the nature and timescales of mechanical processes operating within explosive volcanic conduits during repose periods between eruptive cycles. We address the deformation and porosity/permeability reduction within natural pyroclastic deposits infilling volcanic conduits. We measure the porosity, permeability, and ultrasonic wave velocities for a suite of samples and quantify the strain recorded by pumice clasts. We explore the correlations between the physical properties and deformation fabric. Based on these correlations, we reconstruct the deformation history within the conduit, model the permeability reduction timescales, and outline the implications for the repressurization of the volcanic conduit. Our results highlight a profound directionality in the measured physical properties of these samples related to the deformation‐induced fabric. Gas permeability varies drastically with increasing strain and decreasing porosity along the compaction direction of the fabric but varies little along the elongation direction of the fabric. The deformation fabric records a combination of compaction within the conduit and postcompaction stretching associated with subsequent eruption. Model timescales of these processes are in good agreement with repose periods of cyclic vulcanian eruptions.