z-logo
Premium
Intermittent and efficient outgassing by the upward propagation of film ruptures in a bubbly magma
Author(s) -
Namiki Atsuko,
Kagoshima Takanori
Publication year - 2014
Publication title -
journal of geophysical research: solid earth
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.983
H-Index - 232
eISSN - 2169-9356
pISSN - 2169-9313
DOI - 10.1002/2013jb010576
Subject(s) - outgassing , void (composites) , bubble , mechanics , geology , materials science , composite material , chemistry , physics , organic chemistry
We simulated the ascent of bubbly magma in a volcanic conduit by slow decompression experiments using syrup foam as a magma analogue. During decompression, some large voids appear in the foam. The expansion of one void deep in the foam leads to another void expansion, and the void expansion then propagates upward. The void expansion finally reaches the surface of the foam to originate outgassing. The velocity of the upward propagation of void expansions is essentially the same as the rupturing velocity of the bubble film, suggesting that the rupture of films separating each void propagates upward to create the pathway for outgassing. The calculated apparent permeability of decompressed foam can become higher than that measured for natural pumices/scoriae. The upward propagation of film ruptures thus allows for efficient outgassing. This may also appear as the mechanism for energetic gas emissions originating at a depth, such as Strombolian eruptions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here