z-logo
Premium
Oceanic lithosphere‐asthenosphere boundary from surface wave dispersion data
Author(s) -
Burgos G.,
Montagner J.P.,
Beucler E.,
Capdeville Y.,
Mocquet A.,
Drilleau M.
Publication year - 2014
Publication title -
journal of geophysical research: solid earth
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.983
H-Index - 232
eISSN - 2169-9356
pISSN - 2169-9313
DOI - 10.1002/2013jb010528
Subject(s) - lithosphere , geology , asthenosphere , anisotropy , geophysics , mantle (geology) , shear wave splitting , shear velocity , shear (geology) , azimuth , seismology , geometry , petrology , tectonics , mechanics , physics , mathematics , quantum mechanics , turbulence
According to different types of observations, the nature of lithosphere‐asthenosphere boundary (LAB) is controversial. Using a massive data set of surface wave dispersions in a broad period range (15–300 s), we have developed a three‐dimensional upper mantle tomographic model (first‐order perturbation theory) at the global scale. This is used to derive maps of the LAB from the resolved elastic parameters. The key effects of shallow layers and anisotropy are taken into account in the inversion process. We investigate LAB distribution primarily below the oceans, according to different kinds of proxies that correspond to the base of the lithosphere from the shear velocity variation at depth, the amplitude radial anisotropy, and the changes in azimuthal anisotropy G orientation. The estimations of the LAB depth based on the shear velocity increase from a thin lithosphere (∼20 km) in the ridges, to a thick old‐ocean lithosphere (∼120–130 km). The radial anisotropy proxy shows a very fast increase in the LAB depth from the ridges, from ∼50 km to the older ocean where it reaches a remarkable monotonic subhorizontal profile (∼70–80 km). The LAB depths inferred from the azimuthal anisotropy proxy show deeper values for the increasing oceanic lithosphere (∼130–135 km). The difference between the evolution of the LAB depth with the age of the oceanic lithosphere computed from the shear velocity and azimuthal anisotropy proxies and from the radial anisotropy proxy raises questions about the nature of the LAB in the oceanic regions and of the formation of the oceanic plates.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here