Premium
First Palmer and Millstone Hill midlatitude conjugate observation of thermospheric winds
Author(s) -
Wu Qian,
Noto John,
Kerr Robert,
Kapali Sudha,
Riccobono Juanita,
Wang Wenbin,
Talaat Elsayed R.
Publication year - 2014
Publication title -
journal of geophysical research: space physics
Language(s) - English
Resource type - Journals
eISSN - 2169-9402
pISSN - 2169-9380
DOI - 10.1002/2013ja019062
Subject(s) - millstone hill , thermosphere , middle latitudes , substorm , earth's magnetic field , atmospheric sciences , geology , zonal and meridional , ionosphere , climatology , geophysics , physics , magnetosphere , plasma , quantum mechanics , magnetic field
The first midlatitude conjugate thermospheric wind observations in the American sector showed various degrees of conjugacy between Palmer (64°S, 64°W, magnetic latitude (MLAT) 50°S) and Millstone Hill (42.82°N, 71.5°W, MLAT 53°N) under three different geomagnetic conditions (recovery after a substorm, moderately active, and quiet). The agreement with the National Center for Atmospheric Research's Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) simulations also varies with the geomagnetic activity level. During substorm recovery, the observations at Palmer (PA) and Millstone Hill (MH) both showed strong westward zonal winds, which the standard TIEGCM greatly underestimated. Inadequate ion convection pattern size and lack of effect from Subauroral Polarization Streams (SAPS) may be the cause of the large discrepancy. The TIEGCM with a SAPS model produced stronger westward zonal winds near PA but did not change the zonal wind near MH. The empirical SAPS model needs further refinements. In general, there is better conjugacy with moderate geomagnetic activity levels. The TIEGCM also agrees better with the observations. Under geomagnetically quiet conditions, the meridional winds appear to be less conjugate. The agreement between the observations and model is reasonable. Optical conjugate observations are severely limited by the seasons and weather conditions in the two hemispheres. Yet they are necessary to understanding the thermospheric dynamics in the subauroral region and its relationship with geomagnetic activity levels. The comparisons with TIEGCM are necessary for future model improvements.