z-logo
Premium
Processes controlling Southern Ocean shortwave climate feedbacks in CESM
Author(s) -
Kay J. E.,
Medeiros B.,
Hwang Y.T.,
Gettelman A.,
Perket J.,
Flanner M. G.
Publication year - 2014
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2013gl058315
Subject(s) - shortwave , shortwave radiation , cloud albedo , environmental science , climatology , albedo (alchemy) , cloud forcing , atmospheric sciences , climate model , climate change , forcing (mathematics) , atmosphere (unit) , cloud feedback , cloud cover , meteorology , oceanography , geology , climate sensitivity , cloud computing , radiation , geography , radiative transfer , art , computer science , operating system , quantum mechanics , art history , physics , performance art
A climate model (Community Earth System Model with the Community Atmosphere Model version 5 (CESM‐CAM5)) is used to identify processes controlling Southern Ocean (30–70°S) absorbed shortwave radiation (ASR). In response to 21st century Representative Concentration Pathway 8.5 forcing, both sea ice loss (2.6 W m −2 ) and cloud changes (1.2 W m −2 ) enhance ASR, but their relative importance depends on location and season. Poleward of ~55°S, surface albedo reductions and increased cloud liquid water content (LWC) have competing effects on ASR changes. Equatorward of ~55°S, decreased LWC enhances ASR. The 21st century cloud LWC changes result from warming and near‐surface stability changes but appear unrelated to a small (1°) poleward shift in the eddy‐driven jet. In fact, the 21st century ASR changes are 5 times greater than ASR changes resulting from large (5°) naturally occurring jet latitude variability. More broadly, these results suggest that thermodynamics (warming and near‐surface stability), not poleward jet shifts, control 21st century Southern Ocean shortwave climate feedbacks.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here