Premium
Quantifying the attenuation of structural uplift beneath large lunar craters
Author(s) -
Potter Ross W. K.,
Kring David A.,
Collins Gareth S.
Publication year - 2013
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2013gl057829
Subject(s) - impact crater , geology , lunar craters , attenuation , astrobiology , geophysics , physics , optics
Terrestrial crater observations and laboratory experiments demonstrate that target material beneath complex impact craters is uplifted relative to its preimpact position. Current estimates suggest maximum uplift is one tenth of the final crater diameter for terrestrial complex craters and one tenth to one fifth for lunar central peak craters. These latter values are derived from an analytical model constrained by observations from small craters and may not be applicable to larger complex craters and basins. Here, using numerical modeling, we produce a set of relatively simple analytical equations that estimate the maximum amount of structural uplift and quantify the attenuation of uplift with depth beneath large lunar craters.