Premium
A new semiempirical model of the peak electron density of the Martian ionosphere
Author(s) -
Mendillo Michael,
Marusiak Angela G.,
Withers Paul,
Morgan David,
Gurnett Donald
Publication year - 2013
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2013gl057631
Subject(s) - martian , mars exploration program , radio occultation , solar zenith angle , ionosphere , occultation , zenith , solar maximum , solar cycle , solar minimum , electron density , flux (metallurgy) , atmospheric sciences , satellite , ionospheric sounding , solar cycle 24 , altitude (triangle) , thermosphere , depth sounding , physics , remote sensing , geology , electron , geophysics , astrobiology , solar wind , astronomy , geometry , mathematics , materials science , oceanography , quantum mechanics , magnetic field , metallurgy
Observations of the ionosphere of Mars have now reached a sufficient number to begin discussions on how best to create an empirically based model of its global morphology. Here we use nearly 113,000 values of maximum electron density ( N max ) obtained from 2005 to 2012 by the Mars Advanced Radar for Subsurface and Ionospheric Sounding on board the Mars Express satellite. At the altitude of peak density, photochemical processes dominate over dynamical effects, and thus values of N max can be organized using three basic parameters: solar flux, solar zenith angle, and orbital distance. The model can be used retrospectively to provide N max values for any date starting in 1965. Forecasts are possible using predicted solar flux values extending to the end of solar cycle 24. Validations using Viking in situ observations and radio occultation measurements from several satellite missions provide encouraging results for a useful semiempirical climatological model.