Premium
Evaluating soil biogeochemistry parameterizations in Earth system models with observations
Author(s) -
Wieder William R.,
Boehnert Jennifer,
Bonan Gordon B.
Publication year - 2014
Publication title -
global biogeochemical cycles
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.512
H-Index - 187
eISSN - 1944-9224
pISSN - 0886-6236
DOI - 10.1002/2013gb004665
Subject(s) - biogeochemistry , soil water , environmental science , soil carbon , biogeochemical cycle , soil organic matter , soil science , atmospheric sciences , earth system science , chemistry , ecology , geology , environmental chemistry , biology
Soils contain large reservoirs of terrestrial carbon (C), yet soil C dynamics simulated in Earth systems models show little agreement with each other or with observational data sets. This uncertainty underscores the need to develop a framework to more thoroughly evaluate model parameterizations, structures, and projections. Toward this end we used an analytical solution to calculate approximate equilibrium soil C pools for the Community Land Model version 4 (CLM4cn) and Daily Century (DAYCENT) soil biogeochemistry models. Neither model generated sufficient soil C pools when forced with litterfall inputs from CLM4cn; however, global totals and spatial correlations of soil C pools for both models improved when calculated with litterfall inputs derived from observational data. DAYCENT required additional modifications to simulate soil C pools in deeper soils (0–100 cm). Our best simulations produced global soil C pools totaling 746 and 978 Pg C for CLM4cn and DAYCENT parameterizations, respectively, compared to observational estimates of 1259 Pg C. In spite of their differences in complexity and equilibrium soil C pools, predictions of soil C losses with warming temperatures through 2100 were strikingly similar for both models. Ultimately, CLM4cn and DAYCENT come from the same class of models that represent the turnover of soil C as a first‐order decay process. While this approach may have utility in calculating steady state soil C pools, the applicability of this model configuration in transient simulations remains poorly evaluated.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom