Premium
Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN
Author(s) -
Hammond G. E.,
Lichtner P. C.,
Mills R. T.
Publication year - 2014
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1002/2012wr013483
Subject(s) - scalability , computer science , supercomputer , scaling , context (archaeology) , computational science , code (set theory) , flow (mathematics) , parallel computing , software , field (mathematics) , geology , programming language , mechanics , paleontology , physics , geometry , mathematics , set (abstract data type) , database , pure mathematics
To better inform the subsurface scientist on the expected performance of parallel simulators, this work investigates performance of the reactive multiphase flow and multicomponent biogeochemical transport code PFLOTRAN as it is applied to several realistic modeling scenarios run on the Jaguar supercomputer. After a brief introduction to the code's parallel layout and code design, PFLOTRAN's parallel performance (measured through strong and weak scalability analyses) is evaluated in the context of conceptual model layout, software and algorithmic design, and known hardware limitations. PFLOTRAN scales well (with regard to strong scaling) for three realistic problem scenarios: (1) in situ leaching of copper from a mineral ore deposit within a 5‐spot flow regime, (2) transient flow and solute transport within a regional doublet, and (3) a real‐world problem involving uranium surface complexation within a heterogeneous and extremely dynamic variably saturated flow field. Weak scalability is discussed in detail for the regional doublet problem, and several difficulties with its interpretation are noted.