Premium
Internal gravity waves from atmospheric jets and fronts
Author(s) -
Plougonven Riwal,
Zhang Fuqing
Publication year - 2014
Publication title -
reviews of geophysics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 8.087
H-Index - 156
eISSN - 1944-9208
pISSN - 8755-1209
DOI - 10.1002/2012rg000419
Subject(s) - gravity wave , stratosphere , internal wave , gravitational wave , physics , troposphere , atmospheric wave , atmosphere (unit) , geophysics , forcing (mathematics) , turbulence , atmospheric sciences , mechanics , meteorology , astrophysics
For several decades, jets and fronts have been known from observations to be significant sources of internal gravity waves in the atmosphere. Motivations to investigate these waves have included their impact on tropospheric convection, their contribution to local mixing and turbulence in the upper troposphere, their vertical propagation into the middle atmosphere, and the forcing of its global circulation. While many different studies have consistently highlighted jet exit regions as a favored locus for intense gravity waves, the mechanisms responsible for their emission had long remained elusive: one reason is the complexity of the environment in which the waves appear; another reason is that the waves constitute small deviations from the balanced dynamics of the flow generating them; i.e., they arise beyond our fundamental understanding of jets and fronts based on approximations that filter out gravity waves. Over the past two decades, the pressing need for improving parameterizations of nonorographic gravity waves in climate models that include a stratosphere has stimulated renewed investigations. The purpose of this review is to present current knowledge and understanding on gravity waves near jets and fronts from observations, theory, and modeling, and to discuss challenges for progress in coming years.