z-logo
open-access-imgOpen Access
ST6GalNAc‐I promotes lung cancer metastasis by altering MUC5AC sialylation
Author(s) -
Lakshmanan Imayavaramban,
Chaudhary Sanjib,
Vengoji Raghupathy,
Seshacharyulu Parthasarathy,
Rachagani Satyanarayana,
Carmicheal Joseph,
Jahan Rahat,
Atri Pranita,
ChirravuriVenkata Ramakanth,
Gupta Rohitesh,
Marimuthu Saravanakumar,
Perumal Naveenkumar,
Rauth Sanchita,
Kaur Sukhwinder,
Mallya Kavita,
Smith Lynette M.,
Lele Subodh M.,
Ponnusamy Moorthy P.,
Nasser Mohd W.,
Salgia Ravi,
Batra Surinder K.,
Ganti Apar Kishor
Publication year - 2021
Publication title -
molecular oncology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.332
H-Index - 88
eISSN - 1878-0261
pISSN - 1574-7891
DOI - 10.1002/1878-0261.12956
Subject(s) - biology , metastasis , ectopic expression , cancer research , kras , mutant , colocalization , muc1 , sialyltransferase , cancer , immunoprecipitation , microbiology and biotechnology , mucin , cell culture , glycoprotein , gene , colorectal cancer , biochemistry , genetics
Lung cancer (LC) is the leading cause of cancer‐related mortality. However, the molecular mechanisms associated with the development of metastasis are poorly understood. Understanding the biology of LC metastasis is critical to unveil the molecular mechanisms for designing targeted therapies. We developed two genetically engineered LC mouse models Kras G12D/+ ; Trp53 R172H/+ ; Ad‐Cre (KPA) and Kras G12D/+ ; Ad‐Cre (KA). Survival analysis showed significantly ( P  = 0.0049) shorter survival in KPA tumor‐bearing mice as compared to KA, suggesting the aggressiveness of the model. Our transcriptomic data showed high expression of N‐acetylgalactosaminide alpha‐2, 6‐sialyltransferase 1 (St6galnac‐I) in KPA compared to KA tumors. ST6GalNAc‐I is an O‐glycosyltransferase, which catalyzes the addition of sialic acid to the initiating GalNAc residues forming sialyl Tn (STn) on glycoproteins, such as mucins. Ectopic expression of species‐specific p53 mutants in the syngeneic mouse and human LC cells led to increased cell migration and high expression of ST6GalNAc‐I, STn, and MUC5AC. Immunoprecipitation of MUC5AC in the ectopically expressing p53 R175H cells exhibited higher affinity toward STn. In addition, ST6GalNAc‐I knockout (KO) cells also showed decreased migration, possibly due to reduced glycosylation of MUC5AC as observed by low STn on the glycoprotein. Interestingly, ST6GalNAc‐I KO cells injected mice developed less liver metastasis ( P  = 0.01) compared to controls, while colocalization of MUC5AC and STn was observed in the liver metastatic tissues of control mice. Collectively, our findings support the hypothesis that mutant p53 R175H mediates ST6GalNAc‐I expression, leading to the sialyation of MUC5AC, and thus contribute to LC liver metastasis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here