z-logo
open-access-imgOpen Access
Mitochondrial STAT3 regulates antioxidant gene expression through complex I‐derived NAD in triple negative breast cancer
Author(s) -
Lahiri Tanaya,
Brambilla Lara,
Andrade Joshua,
Askenazi Manor,
Ueberheide Beatrix,
Levy David E.
Publication year - 2021
Publication title -
molecular oncology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.332
H-Index - 88
eISSN - 1878-0261
pISSN - 1574-7891
DOI - 10.1002/1878-0261.12928
Subject(s) - biology , nad+ kinase , mitochondrion , stat3 , microbiology and biotechnology , transcription factor , stat protein , biochemistry , signal transduction , gene , enzyme
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor with roles in inflammation and tumorigenicity. A fraction of STAT3 localizes in mitochondria, where it augments tumorigenesis via regulation of mitochondrial functions, including modulation of respiration and redox status. We show a novel mechanism for mitochondrial STAT3 regulation of redox homeostasis in triple‐negative breast cancer cells. Loss of STAT3 diminished complex I dehydrogenase activity and impaired NAD+ regeneration, leading to impaired expression of glutathione biosynthetic genes and other antioxidant genes. Expressing mitochondrially restricted STAT3 or replenishment of the cellular NAD pool restored antioxidant gene expression, as did complementation of the NADH dehydrogenase activity by expression of the STAT3‐independent yeast dehydrogenase, NDI1. These NAD‐regulated processes contributed to malignant phenotypes by promoting clonal cell growth and migration. Proximity interaction and protein pull‐down assays identified three components of complex I that associated with mitochondrial STAT3, providing a potential mechanistic basis for how mitochondrial STAT3 affects complex I activity. Our data document a novel mechanism through which mitochondrial STAT3 indirectly controls antioxidant gene regulation through a retrograde NAD+ signal that is modulated by complex I dehydrogenase activity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here