z-logo
open-access-imgOpen Access
Pharmacologic inhibition of Akt in combination with chemotherapeutic agents effectively induces apoptosis in ovarian and endometrial cancer cell lines
Author(s) -
Fabi François,
Adam Pascal,
Parent Sophie,
Tardif Laurence,
Cadrin Monique,
Asselin Eric
Publication year - 2021
Publication title -
molecular oncology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.332
H-Index - 88
eISSN - 1878-0261
pISSN - 1574-7891
DOI - 10.1002/1878-0261.12888
Subject(s) - protein kinase b , pi3k/akt/mtor pathway , doxorubicin , cisplatin , cancer research , phosphorylation , apoptosis , cell growth , cancer cell , pharmacology , biology , chemistry , signal transduction , microbiology and biotechnology , cancer , chemotherapy , biochemistry , genetics
The PI3K/Akt signaling pathway, the most frequently altered signaling system in human cancer, is a crucial inducer of dysregulated proliferation and neoplastic processes; however, few therapeutic strategies using PI3K/Akt inhibitors singly have been shown to be effective. The purpose of this paper was to underline the potential benefit of pharmacological modulation of the PI3K/Akt pathway when combined with specific chemotherapeutic regimens. We have studied the ability of NVP‐BEZ235 (PI3K/mTOR inhibitor) and AZD5363 (Akt inhibitor) in the sensitization of cancer cells to cisplatin and doxorubicin. Our results show that NVP‐BEZ235 sensitizes cells preferentially to cisplatin while AZD5363 sensitizes cells to doxorubicin. At equal concentrations (5 μ m ), both inhibitors reduce ribosomal protein S6 phosphorylation, but AZD5363 is more effective in reducing GSK3β phosphorylation as well as S6 phosphorylation. Additionally, AZD5363 is capable of inducing FOXO1 and p53 nuclear localization and reduces BAD phosphorylation, which is generally increased by cisplatin and doxorubicin. Finally, the combination of AZD5363 and doxorubicin induces apoptosis in cells and robustly reduces cell ability to clonally replicate, which underlines a potential cooperative effect of the studied compounds.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here