z-logo
open-access-imgOpen Access
Obesity‐induced MBD 2_v2 expression promotes tumor‐initiating triple‐negative breast cancer stem cells
Author(s) -
Teslow Emily A.,
Mitrea Cristina,
Bao Bin,
Mohammad Ramzi M.,
Polin Lisa A.,
Dyson Greg,
Purrington Kristen S.,
BolligFischer Aliccia
Publication year - 2019
Publication title -
molecular oncology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.332
H-Index - 88
eISSN - 1878-0261
pISSN - 1574-7891
DOI - 10.1002/1878-0261.12444
Subject(s) - triple negative breast cancer , breast cancer , stem cell , cancer research , cancer stem cell , cancer , biology , medicine , microbiology and biotechnology
Obesity is a risk factor for triple‐negative breast cancer ( TNBC ) incidence and poor outcomes, but the underlying molecular biology remains unknown. We previously identified in TNBC cell cultures that expression of epigenetic reader methyl‐CpG‐binding domain protein 2 ( MBD 2), specifically the alternative mRNA splicing variant MBD variant 2 ( MBD 2_v2), is dependent on reactive oxygen species ( ROS ) and is crucial for maintenance and expansion of cancer stem cell‐like cells ( CSC s). Because obesity is coupled with inflammation and ROS , we hypothesized that obesity can fuel an increase in MBD 2_v2 expression to promote the tumor‐initiating CSC phenotype in TNBC cells in vivo . Analysis of TNBC patient datasets revealed associations between high tumor MBD 2_v2 expression and high relapse rates and high body mass index ( BMI ). Stable gene knockdown/overexpression methods were applied to TNBC cell lines to elucidate that MBD 2_v2 expression is governed by ROS ‐dependent expression of serine‐ and arginine‐rich splicing factor 2 ( SRSF 2). We employed a diet‐induced obesity ( DIO ) mouse model that mimics human obesity to investigate whether obesity causes increased MBD 2_v2 expression and increased tumor initiation capacity in inoculated TNBC cell lines. MBD 2_v2 and SRSF 2 levels were increased in TNBC cell line‐derived tumors that formed more frequently in DIO mice relative to tumors in lean control mice. Stable MBD 2_v2 overexpression increased the CSC fraction in culture and increased TNBC cell line tumor initiation capacity in vivo . SRSF 2 knockdown resulted in decreased MBD 2_v2 expression, decreased CSC s in TNBC cell cultures, and hindered tumor formation in vivo . This report describes evidence to support the conclusion that MBD 2_v2 expression is induced by obesity and drives TNBC cell tumorigenicity, and thus provides molecular insights into support of the epidemiological evidence that obesity is a risk factor for TNBC . The majority of TNBC patients are obese and rising obesity rates threaten to further increase the burden of obesity‐linked cancers, which reinforces the relevance of this report.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here