z-logo
Premium
Mechanisms and biomedical implications of –1 programmed ribosome frameshifting on viral and bacterial mRNAs
Author(s) -
Korniy Natalia,
Samatova Ekaterina,
Anokhina Maria M.,
Peske Frank,
Rodnina Marina V.
Publication year - 2019
Publication title -
febs letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.593
H-Index - 257
eISSN - 1873-3468
pISSN - 0014-5793
DOI - 10.1002/1873-3468.13478
Subject(s) - translational frameshift , ribosome , frameshift mutation , translation (biology) , transfer rna , biology , genetics , computational biology , messenger rna , microbiology and biotechnology , rna , gene , mutation
Some proteins are expressed as a result of a ribosome frameshifting event that is facilitated by a slippery site and downstream secondary structure elements in the mRNA . This review summarizes recent progress in understanding mechanisms of –1 frameshifting in several viral genes, including IBV 1a/1b , HIV ‐1 gag‐pol , and SFV 6K , and in Escherichia coli dnaX . The exact frameshifting route depends on the availability of aminoacyl‐ tRNA s: the ribosome normally slips into the –1‐frame during tRNA translocation, but can also frameshift during decoding at condition when aminoacyl‐ tRNA is in limited supply. Different frameshifting routes and additional slippery sites allow viruses to maintain a constant production of their key proteins. The emerging idea that tRNA pools are important for frameshifting provides new direction for developing antiviral therapies.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here