Premium
Mirroring the multifaceted role of RNA and its partners in gene expression
Author(s) -
Zavolan Mihaela,
Gerber André P.
Publication year - 2018
Publication title -
febs letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.593
H-Index - 257
eISSN - 1873-3468
pISSN - 0014-5793
DOI - 10.1002/1873-3468.13230
Subject(s) - rna , biology , non coding rna , ribozyme , small nucleolar rna , genetics , computational biology , small rna , gene , gene expression , long non coding rna , microrna
In the early years of Molecular Biology, the role of RNA was largely considered to be the transmission of the genetic information stored in the DNA into polypeptides. Three major types of RNA engaged in these processes were known: messenger RNA (mRNA), transfer RNA (tRNA) and ribosomal RNA (rRNA). However, within the last half century our knowledge about RNA classes, abundance and diversity of functions has increased dramatically. The discovery that the ribosome is essentially a ribozyme 1, 2 especially brought the central role of RNA for cellular life into the spotlight. The turn of the millennium was also the time of another far‐reaching realization, that of the pervasiveness of small RNA‐dependent regulation of gene expression 3. Within the decade that followed, RNAs were found in essentially all regulatory layers of gene expression, from the epigenetic layer at the top of the gene expression cascade 4, 5 to the most distal translation layer 6. Much of this rapid transition was enabled by sequencing technologies that were developed in the wake of the human genome project. Coupled with ingenious protocols for isolating RNAs of various sizes and molecular properties (e.g. 7) and computational methods to annotate various classes of small RNAs 8, the set of regulatory RNAs has expanded and diversified rapidly. We now know that 200 nucleotides) transcripts that functionally contribute to the control of cell differentiation and maintenance of cell identity. Notably, as most (~ 90%) of disease‐associated single nucleotide polymorphisms are located in gene regulatory or intergenic regions, long‐intergenic ncRNAs (lincRNAs) in particular may have pivotal impact for the development of personalized medicine therapies in the future10. Whether small or long, ncRNAs often bear domains enabling direct and specific interactions with other RNAs, forming RNA‐RNA hybrids that participate in the control of gene expression and biogenesis of RNAs 11.