Premium
Species differences in unlocking B‐side electron transfer in bacterial reaction centers
Author(s) -
Dylla Nicholas P.,
Faries Kaitlyn M.,
Wyllie Ryan M.,
Swenson Angela M.,
Hanson Deborah K.,
Holten Dewey,
Kirmaier Christine,
Laible Philip D.
Publication year - 2016
Publication title -
febs letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.593
H-Index - 257
eISSN - 1873-3468
pISSN - 0014-5793
DOI - 10.1002/1873-3468.12264
Subject(s) - photosynthetic reaction centre , rhodobacter sphaeroides , electron transfer , transmembrane protein , chemistry , electron transport chain , side chain , mutant , protein subunit , transmembrane domain , photosynthesis , stereochemistry , biophysics , membrane , biology , biochemistry , photochemistry , gene , receptor , organic chemistry , polymer
The structure of the bacterial photosynthetic reaction center ( RC ) reveals symmetry‐related electron transfer ( ET ) pathways, but only one path is used in native RC s. Analogous mutations have been made in two Rhodobacter ( R .) species. A glutamic acid at position 133 in the M subunit increases transmembrane charge separation via the naturally inactive (B‐side) path through impacts on primary ET in mutant R. sphaeroides RC s. Prior work showed that the analogous substitution in the R. capsulatus RC also increases B‐side activity, but mainly affects secondary ET . The overall yields of transmembrane ET are similar, but enabled in fundamentally different ways.