Premium
On the Influence of the Carbohydrate Moiety on Chromophore Formation during Food‐Related Maillard Reactions of Pentoses, Hexoses, and Disaccharides
Author(s) -
Frank Oliver,
Hofmann Thomas
Publication year - 2000
Publication title -
helvetica chimica acta
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.74
H-Index - 82
eISSN - 1522-2675
pISSN - 0018-019X
DOI - 10.1002/1522-2675(20001220)83:12<3246::aid-hlca3246>3.0.co;2-5
Subject(s) - chemistry , pentose , maillard reaction , furan , moiety , hexose , stereochemistry , carbohydrate , chromophore , organic chemistry , fermentation , enzyme
The influence of the carbohydrate moiety on the formation of 2‐[4‐oxo‐3‐(pyrrolidin‐1‐yl)cyclopent‐2‐en‐1‐ylidene]furan‐3(2 H )‐one chromophores during food‐related Maillard reactions from pentoses, hexoses, and disaccharides is reported. The orange compounds 1a , b and 2a , b , detected in a roasted xylose/ L ‐proline mixture, were identified as (2 E )/(2 Z )‐4‐hydroxy‐5‐methyl‐2‐[4‐oxo‐3‐(pyrrolidin‐1‐yl)cyclopent‐2‐ene‐1‐ylidene]furan‐3(2 H )‐one and (2 E )/(2 Z )‐5‐methyl‐2‐[4‐oxo‐3‐(pyrrolidin‐1‐yl)cyclopent‐2‐en‐1‐ylidene]‐4‐(pyrrolidin‐1‐yl)furan‐3(2 H )‐one, respectively, by 1D‐ and 2D‐NMR, LC/mass, and UV/VIS spectroscopy, as well as by synthetic experiments. Studies on their formation revealed that 1a , b and 2a , b are formed upon condensation of pentose‐derived 4‐hydroxy‐5‐methyl‐ ( 3 ) and 5‐methyl‐4‐(pyrrolidin‐1‐yl)furan‐3(2 H )‐one ( 4 ), respectively, with 2‐hydroxycyclopenta‐2,4‐dien‐1‐one ( 5 ) and L ‐proline ( Scheme 1 ). Further condensation reaction of 1a , b with furan‐2‐carbaldehyde yielded the red (2 Z )‐2‐{(5 Z )‐5‐[(2‐furyl)methylidene]‐4‐oxo‐3‐(pyrrolidin‐1‐yl)cyclopent‐2‐en‐1‐ylidene}‐4‐hydroxy‐5‐methylfuran‐3(2 H )‐one ( 6 ) as an additional novel Maillard chromophore. Replacement of the pentose by glucose in the mixture with L ‐proline led, after dry‐heating, to the identification of the structurally related colored (2 Z )/(2 E )‐2‐[5‐hydroxy‐5‐methyl‐4‐oxo‐3‐(pyrrolidin‐1‐yl)cyclopent‐2‐en‐1‐ylidene]‐4‐hydroxy‐5‐methylfuran‐3(2 H )‐one ( 7a / 7b ) and to the characterization of 2,4,5‐trihydroxy‐5‐methylcyclopent‐2‐en‐1‐one ( 10 ) and 5‐hydroxy‐5‐methylcyclopent‐3‐ene‐1,2‐dione ( 11 ) as key intermediates in chromophore formation from hexoses. Comparative studies on disaccharides revealed that not 7a / 7b , but the colorless 4‐( α ‐ D ‐glucopyranosyloxy)‐2‐hydroxy‐2‐methyl‐6 H ‐pyran‐3(2 H )‐one ( 8 ) and 2‐( α ‐ D ‐glucopyranosyloxy)‐4,5‐dihydroxy‐5‐methylcyclopent‐2‐en‐1‐one ( 9 ) were formed amongst the major degradation products of maltose ( Scheme 4 ). The aglycons of 8 and 9 could not be liberated under food‐related heating conditions, thus, inhibiting the formation of the color precursors 10 and 11 and, in consequence, of 7a / 7b ( Scheme 6 ). These data strongly suggest that the 1,4‐glycosidic linkage of disaccharides is responsible for their lower efficiency in browning development compared to pentoses or hexoses.