Premium
Distribution and plant availability of soil copper fractions following copper sulphate and farmyard manure applications
Author(s) -
Rupa Thimmasamudram Raghavareddy,
Tripathi Awadhesh Kumar,
Rao Cherukumalli Srinivasa,
Singh Kamlesh Narain,
Rao Annangi Subba
Publication year - 2001
Publication title -
journal of plant nutrition and soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 87
eISSN - 1522-2624
pISSN - 1436-8730
DOI - 10.1002/1522-2624(200108)164:4<451::aid-jpln451>3.0.co;2-d
Subject(s) - chemistry , copper , soil water , manure , alfisol , fertilizer , fractionation , farmyard manure , environmental chemistry , agronomy , soil science , chromatography , geology , organic chemistry , biology
The effects of copper (Cu) application on the Cu distribution in various pools were investigated in laboratory and pot culture experiments with two Alfisols. The total soil Cu was fractionated into water‐soluble plus exchangeable (CA‐Cu), inorganically‐bound (AAC‐Cu), organically‐bound (PYR‐Cu), oxide‐bound (OX‐Cu), and residual (RES‐Cu) forms. The relative contribution of these fractions to Cu uptake by wheat was calculated through path coefficient analysis, a statistical technique that differentiates between correlation and causation. Copper fertilizer was applied at rates of 0, 5, and 10 mg (kg soil) —1 and FYM at rates of 0 and 10 t ha —1 . Results indicated that the amounts of Cu present in CA‐Cu were very small. The CA‐Cu, AAC‐Cu, PYR‐Cu, and OX‐Cu fractions were increased and RES‐Cu was not significantly affected by the Cu application. No significant variation (P ≤ 0.01) was observed between Cu application with and without FYM on the distribution of different fractions of soil Cu except PYR‐Cu in Patancheru soil. Among the levels, application of 10 mg Cu (kg soil) —1 showed the maximum increase in different fractions of soil Cu. The per cent increase in Cu concentration in different fractions followed the order CA‐Cu > AAC‐Cu > PYR‐Cu > OX‐Cu > RES‐Cu. The path analysis showed that the PYR‐Cu and AAC‐Cu are the most important fractions for maintaining the available Cu pool in soils.