Premium
The Seiberg‐Witten Equations on Hermitian Surfaces
Author(s) -
Lupascu Paul
Publication year - 2002
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/1522-2616(200207)242:1<132::aid-mana132>3.0.co;2-a
Subject(s) - moduli space , mathematics , hermitian matrix , context (archaeology) , pure mathematics , metric (unit) , surface (topology) , mathematical analysis , moduli , geometry , physics , quantum mechanics , paleontology , operations management , economics , biology
Abstract We study the Seiberg‐Witten equations on an arbitrary compact complex surface endowed with a Hermitian metric. We obtain a description of the moduli space of solutions in terms of effective divisors on the surface. This result was proved previously in [OT1] in the Kähler context. Using concrete examples, we also point out some major differences between the Seiberg‐Witten moduli spaces on Kähler resp. non‐Kähler surfaces.