Premium
Uniqueness Results for Matrix‐Valued Schrödinger, Jacobi, and Dirac‐Type Operators
Author(s) -
Gesztesy Fritz,
Kiselev Alexander,
Makarov Konstantin A.
Publication year - 2002
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/1522-2616(200206)239:1<103::aid-mana103>3.0.co;2-f
Subject(s) - mathematics , diagonal , operator (biology) , dirac (video compression format) , matrix (chemical analysis) , type (biology) , diagonal matrix , mathematical physics , vertex (graph theory) , uniqueness , schrödinger's cat , mathematical analysis , pure mathematics , combinatorics , quantum mechanics , geometry , physics , graph , materials science , ecology , composite material , biology , neutrino , repressor , chemistry , biochemistry , transcription factor , gene
Let g ( z , x ) denote the diagonal Green's matrix of a self‐adjoint m × m matrix‐valued Schrödinger operator\documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$$ H = -\frac{d^2}{dx^2} I_{m} + Q \; {\rm in} \; L^2 {(\mathbb R}^m), \; m \in {\mathbb N}. $$ \end{document}One of the principal results proven in this paper states that for a fixed x 0 ∈ ℝ and all z ∈ ℂ + , g ( z , x 0 ) and g ′( z , x 0 ) uniquely determine the matrix‐valued m × m potential Q ( x ) for a.e. x ∈ ℝ. We also prove the following local version of this result. Let g j ( z , x ), j = 1, 2 be the diagonal Green's matrices of the self‐adjoint Schrödinger operators\documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$$ H_j = -\frac{d^2}{dx^2} I_{m} + Q_j \; {\rm in} \; L^2 {(\mathbb R}^m). $$ \end{document}Suppose that for fixed a > 0 and x 0 ∈ ℝ,\documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$$ \parallel g_1(z, x_0) - g_2(z, x_0) \parallel _{{(\mathbb C}^{m \times m}} + \parallel g{^{\prime}_1} (z, x_0) - g{^{\prime}_2} (z, x_0) \parallel _{{(\mathbb C}^{m \times m}} {{=} \atop {\mid z \mid \rightarrow \infty}} O ( e^{-2{\rm Im}(z^{1/2})a} \parallel $$ \end{document}for z inside a cone along the imaginary axis with vertex zero and opening angle less than π /2, excluding the real axis. Then Q 1 ( x ) = Q 2 ( x ) for a.e. x ∈ [ x 0 – a , x 0 + a ]. Analogous results are proved for matrix‐valued Jacobi and Dirac‐type operators.