z-logo
Premium
Sharp Bounds for the Ratio of q – Gamma Functions
Author(s) -
Alzer Horst
Publication year - 2001
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/1522-2616(200102)222:1<5::aid-mana5>3.0.co;2-q
Subject(s) - mathematics , statistics , combinatorics , pure mathematics
Let Γ q (0 < q ≠ 1) be the q –gamma function and let s ∈ (0, 1) be a real number. We determine the largest number α = α ( q , s ) and the smallest number β = β ( q , s ) such that the inequalities$$\left ( {{1 - q^{x+\alpha}} \over {1 - q}} \right ) ^{1 - s} < {{\Gamma _q (x + 1)} \over {\Gamma _q (x + s)}} < \left ( {{1 - q ^{x+\beta}} \over {1 - q}} \right ) ^{1 - s}$$hold for all positive real numbers x . Our result refines and extends recently published inequalities by Ismail and Muldoon (1994).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here