Premium
Asymptotically Euclidean Ends of Ricci Flat Manifolds, and Conformal Inversions
Author(s) -
Kühnel Wolfgang,
Rademacher Hans–Bert
Publication year - 2000
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/1522-2616(200011)219:1<125::aid-mana125>3.0.co;2-9
Subject(s) - mathematics , conformal map , ricci curvature , pure mathematics , euclidean geometry , manifold (fluid mechanics) , mathematical analysis , metric (unit) , riemannian manifold , geometry , curvature , mechanical engineering , operations management , engineering , economics
We prove that a Ricci flat end of a Riemannian manifold is asymptotically Euclidean if it is obtained from a smooth metric by a conformal inversion. A number of consequences are discussed.