z-logo
Premium
Compactness Conditions for the Green Operator in L p (ℝ) Corresponding to a General Sturm–Liouville Operator
Author(s) -
Chernyavskaya N.,
Shuster L.
Publication year - 2000
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/1522-2616(200007)215:1<33::aid-mana33>3.0.co;2-6
Subject(s) - mathematics , operator (biology) , compact space , spectrum (functional analysis) , sturm–liouville theory , function (biology) , mathematical analysis , pure mathematics , physics , boundary value problem , quantum mechanics , chemistry , biochemistry , repressor , transcription factor , gene , evolutionary biology , biology
We consider the equation $-(r(x)y^{\prime} (x))^{\prime} + q(x)y(x) = f(x)\, , \quad x \, \in \, $ ℝ, where $r(x) > 0$ , $q(x) \ge 0$ for $x\, \in \,$ ℝ, $\textstyle {{1} \over {r(x)}} \in \, L^{\rm loc} _1$ (ℝ), $q(x) \, \in \, L^{\rm loc}_1$ (ℝ), $f(x) \, \in \, L_p$ (ℝ), $p \, \in \, [1, \, \infty]$ $(L_\infty$ (ℝ) := C (ℝ)). We give necessary and sufficient conditions under which, regardless of $p \, \in \, [1, \, \infty]$ , the following statements hold simultaneously: I) For any $f(x) \, \in \, L_p$ (ℝ) Equation (0.1) has a unique solution $y(x) \, \in \, L_p$ (ℝ) where $y(x)=(Gf)(x) \, $ $\mathop = ^{\rm def}\, $ \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\int ^{\infty}_{-\infty}$\end{document} $G(x,\, t)f(t)dt\, , \quad x \, \in \,$ ℝ. II) The operator $G: L_p$ (ℝ) → $L_p$ (ℝ) is compact. Here $G(x,\, t)$ is the Green function corresponding to (0.1). This result is applied to study some properties of the spectrum of the Sturm–Liouville operator.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here