Premium
Corrosion behaviour of the new gas turbine alloy 2100 GT in hot gases and combustion products
Author(s) -
Brill U.,
Haubold T. I.
Publication year - 2001
Publication title -
materials and corrosion
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.487
H-Index - 55
eISSN - 1521-4176
pISSN - 0947-5117
DOI - 10.1002/1521-4176(200108)52:8<607::aid-maco607>3.0.co;2-8
Subject(s) - materials science , metallurgy , alloy , corrosion , tantalum carbide , tantalum , 6111 aluminium alloy , carbide , high temperature corrosion , aluminium , superalloy , 6063 aluminium alloy
Not only excellent high temperature mechanical properties are needed to establish a new gas turbine alloy, but also a very good oxidation behaviour, together with good resistance to so‐called “hot corrosion”. This paper describes experimental studies on the corrosion behaviour in hot gases and combustion products of a new Ni‐Cr‐Ta alloy 2100 GT in comparison to the commercially established alloys 230, C‐263 and 617. Alloy 2100 GT is a newly developed cobalt, tungsten and molybdenum free Ni‐base superalloy of Krupp VDM. It contains as major alloying elements 25 wt.‐% chromium, 8 wt.‐% tantalum, 2.4–3 wt.‐% aluminium and 0.2–0.3 wt.‐% carbon. High temperature strength is achieved by the addition of tantalum, resulting in significantly increased solid solution strengthening, carbide hardening due to the formation of primary precipitated tantalum carbides, and γ′‐precipitation hardening by aluminium and tantalum. The isothermal oxidation tests showed that the parabolic rate constant of alloy 2100 GT is similar to that of alumina‐forming alloys. This is achieved by the remarkably high aluminium content for a wrought alloy. Additions of yttrium improve the spalling resistance under thermal cycling by the formation of very thin and tightly adherent oxide layers. No deleterious effect caused by the addition of tantalum could be found. In the cyclic oxidation tests performed at temperatures between 700°C and 1200°C alloy 2100 GT showed the lowest mass change of all the alloys investigated. Na 2 SO 4 has been found to be a dominant component of alkali salt deposits on gas turbine components at elevated temperatures. Combustion gases contain SO 2 because of the impure nature of the fuel. To investigate the hot corrosion behaviour of alloy 2100 GT, tests were performed with salt deposits containing 0.1 mol Na 2 SO 4 and a test gas comprising air and 0.1% SO 2 . Test temperatures were 600°C, 700°C, 850°C and 950°C. Alloy 2100 GT exhibited the best performance at all test temperatures. It was the only alloy which did not suffer any fluxing of the oxide layer and only slight internal sulphidation was observed.