z-logo
Premium
On Bivariate Cumulative Damage Models With Application
Author(s) -
Gregory Gavin G.
Publication year - 2002
Publication title -
biometrical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.108
H-Index - 63
eISSN - 1521-4036
pISSN - 0323-3847
DOI - 10.1002/1521-4036(200210)44:7<835::aid-bimj835>3.0.co;2-v
Subject(s) - bivariate analysis , mathematics , joint probability distribution , poisson distribution , bivariate data , cumulative distribution function , statistics , negative binomial distribution , conditional probability distribution , marginal distribution , random variable , probability density function
Bivariate cumulative damage models are proposed where the responses given the damages are independent random variables. The bivariate damage process can be either bivariate Poisson or bivariate gamma. A bivariate continuous cumulative damage model is investigated in which the responses given the damages have gamma distributions. In this case evaluation of the joint density function and bivariate tail probability function is facilitated by expanding the gamma distributions of the conditional responses by Laguerre polynomials. This approach also leads to evaluation of associated survival models. Moments and estimating equations are discussed. In addition, a bivariate discrete cumulative damage model is investigated in which the responses given the damages have a distribution chosen from a class that includes the negative binomial, the Neyman Type‐A, the Polya‐Aeppli, and the Lagrangian Poisson. Probabilities are obtained from recursive formulas which do not involve cancellation error as all quantities are non‐negative. Moments and estimating equations are presented for these models also. The continuous and the discrete models are applied to describe the rise of systolic and diastolic blood pressure with age.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here