Premium
Time‐Resolved Photoluminescence Studies of Cubic and Hexagonal GaN Quantum Dots
Author(s) -
Simon J.,
MartinezGuerrero E.,
Adelmann C.,
Mula G.,
Daudin B.,
Feuillet G.,
Mariette H.,
Pelekanos N.T.
Publication year - 2001
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/1521-3951(200103)224:1<13::aid-pssb13>3.0.co;2-m
Subject(s) - photoluminescence , quantum dot , exciton , electric field , materials science , condensed matter physics , hexagonal crystal system , hexagonal phase , nanostructure , gallium nitride , polarization (electrochemistry) , curse of dimensionality , optoelectronics , nanotechnology , physics , chemistry , crystallography , quantum mechanics , layer (electronics) , machine learning , computer science
We report time‐integrated and time‐resolved photoluminescence (PL) experiments on cubic and hexagonal GaN/AlN quantum wells (QWs) and self‐assembled quantum dots (QDs). The comparison between nitride nanostructures of different phase allows us to distinguish pure dimensionality effects from the influence of the large polarization‐induced electric fields present in the hexagonal nanostructures. The QDs show a weak temperature dependence of the PL intensity and decay time as a result of enhanced exciton localization. Furthermore, the hexagonal nanostructures exhibit longer decay times than the cubic ones due to electric field‐induced carrier separation.