Premium
Some Physical Implications of Ginzburg‐Landau Equation with an Internal (Topological) Vector Potential
Author(s) -
Rezlescu N.,
Buzea C. Gh.,
Buzea C.,
Agop M.
Publication year - 1997
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/1521-3951(199705)201:1<227::aid-pssb227>3.0.co;2-0
Subject(s) - topology (electrical circuits) , magnetic field , physics , gauge (firearms) , gauge theory , field (mathematics) , fermion , vector potential , distribution (mathematics) , mathematics , mathematical physics , mathematical analysis , quantum mechanics , pure mathematics , materials science , combinatorics , metallurgy
In this paper, by using the complex speed of a particular distribution of composite fermions between the Cu–O planes, we introduce the topological gauge field into the Ginzburg‐Landau equation and compute the “background topological magnetic field strength” and the topological flux. Some comparisons with experimental data are also made.