Premium
Elliptic Sine‐Gordon Solitons in a Heisenberg Plane
Author(s) -
Ferrer R.
Publication year - 1997
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/1521-3951(199702)199:2<535::aid-pssb535>3.0.co;2-y
Subject(s) - soliton , sine gordon equation , sine , physics , elliptic function , mathematical physics , nonlinear system , plane (geometry) , invariant (physics) , mathematical analysis , transformation (genetics) , limit (mathematics) , magnetic field , scale invariance , elliptic integral , classical mechanics , mathematics , quantum mechanics , geometry , biochemistry , chemistry , gene
It is shown that nonlinear elementary excitations in a Heisenberg plane are governed by a static scale‐invariant elliptic sine‐Gordon equation. A solution is found using a Bäcklund transformation that characterizes the orientation of the soliton with respect to the external magnetic field. The asymptotic limit gives static ring‐shaped solitons.