Premium
Flame surface modification of polyethylene sheets
Author(s) -
Severini Febo,
Di Landro Luca,
Galfetti Luciano,
Meda Laura,
Ricca Giuliana,
Zenere Gianluca
Publication year - 2002
Publication title -
macromolecular symposia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.257
H-Index - 76
eISSN - 1521-3900
pISSN - 1022-1360
DOI - 10.1002/1521-3900(200205)181:1<225::aid-masy225>3.0.co;2-z
Subject(s) - maleic anhydride , materials science , x ray photoelectron spectroscopy , glycidyl methacrylate , polyethylene , contact angle , surface modification , high density polyethylene , polymer , fourier transform infrared spectroscopy , wetting , polymer chemistry , low density polyethylene , adhesion , monomer , analytical chemistry (journal) , composite material , chemical engineering , chemistry , copolymer , organic chemistry , engineering
High density polyethylene sheets 2 mm thick were flame treated to modify the surface properties. Sheets treated using a flame with air to gas (methane) ratio ∼ 10:1 at different distances between the inner cone tip of the flame and the polymer surface were investigated. Grafting of selected monomers as maleic anhydride, acrylamide and glycidyl methacrylate was attempted by flame treatment of sheets covered with a monomer layer. Good grafting results were obtained with acrylamide and maleic anhydride. The surface temperature‐time dependence during the flame treatment was measured with a high resolution thermocouple. Scanning Electron Microscopy (SEM) allowed evidencing a modified thickness of about 120 μ. The chemical surface modification was studied by X ray Photoelectron Spectroscopy (XPS) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT). The hydroxyl, carbonyl and carboxyl content was measured after derivatization with reagents containing an elemental tag to facilitate XPS analysis of surface functional groups. In comparison to the untreated polyethylene, wetting tension and contact angle of the flamed materials showed a strong variation. This variation was almost independent of the distance between the flame and the polymer surface. Adhesion between treated polyethylene and a polyurethane adhesive was determined using T‐peel test measurements. High adhesion levels were found with flame treated polyethylene at 5 mm distance. XPS results indicate that when adhesion is high, the hydroxyl is in excess compared to the other measured functions, i.e. carbonyl and carboxyl species.