Premium
Study of the drying behavior of model latex blends during film formation: influence of carboxyl groups
Author(s) -
Tang Jiansheng,
Dimonie Victoria L.,
Daniels Eric S.,
Klein Andrew,
ElAasser Mohamed S.
Publication year - 2000
Publication title -
macromolecular symposia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.257
H-Index - 76
eISSN - 1521-3900
pISSN - 1022-1360
DOI - 10.1002/1521-3900(200004)155:1<139::aid-masy139>3.0.co;2-r
Subject(s) - ammonium hydroxide , hydroxide , polymer chemistry , sodium hydroxide , polystyrene , dispersity , copolymer , particle size , potassium hydroxide , chemical engineering , materials science , chemistry , ammonium , organic chemistry , polymer , engineering
Latex blending is a strategy used to eliminate volatile organic compounds from latex coatings formulations. This paper focuses on the study of the drying kinetics of model hard/soft latex blends and the influence of the presence of carboxyl groups on these particles as well as the extent of neutralization of the carboxyl groups with different bases. The model latex blend was comprised of clean, well‐defined polystyrene hard and poly( n ‐butyl methacrylate‐co‐ n ‐butyl acrylate) soft latex particles with monodisperse particle sizes, homogeneous copolymer composition, and independent control of particle size and carboxyl group content. Drying models are discussed. It was found that the presence of carboxyl groups in the latex particles retarded the drying rate of the model latex blends. When the carboxyl groups present in the latex blends with low carboxyl group coverage on polystyrene particles were neutralized by using ammonium hydroxide or sodium hydroxide, the drying rate increased. When the carboxyl groups present in the latex blends with a high carboxyl group coverage on polystyrene particles were neutralized by sodium hydroxide, potassium hydroxide, or cesium hydroxide, the drying rate first decreased and then increased as the extent of the neutralization increased. However, the neutralization of these carboxyl groups with ammonium hydroxide increased the drying rate of the latex blends within a broad range of neutralization conditions (from 0 to 100%). A cluster model was proposed to explain these phenomena.