z-logo
Premium
Intuitionistic Fixed Point Theories for Strictly Positive Operators
Author(s) -
Rüede Christian,
Strahm Thomas
Publication year - 2002
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/1521-3870(200202)48:2<195::aid-malq195>3.0.co;2-s
Subject(s) - mathematics , iterated function , fixed point , fixed point theorem , operator (biology) , set (abstract data type) , discrete mathematics , point (geometry) , pure mathematics , algebra over a field , arithmetic , mathematical analysis , computer science , biochemistry , chemistry , geometry , repressor , transcription factor , gene , programming language
In this paper it is shown that the intuitionistic .xed point theory $ \widehat {\rm ID} ^{i} _{\alpha} $ (strict) for α times iterated fixed points of strictly positive operator forms is conservative for negative arithmetic and $ \Pi ^{0} _{2} $ sentences over the theory $ {\rm ACE} ^{-i} _{\alpha} $ for α times iterated arithmetic comprehension without set parameters.This generalizes results previously due to Buchholz [5] and Arai [2].

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom